Synthesis of LiFePO4/C composite as a cathode material for lithium-ion battery by a novel two-step method
نویسندگان
چکیده
In this study, LiFePO4/C is synthesized via a novel two-step method. The first step is the synthesis of nano-sized intermediate FePO4 by a modified sol–gel method. A fast and full combustion procedure is involved to remove carbon and control the size of the intermediate particles. The second step is to prepare LiFePO4/C by combining solid-state reaction with controllable carbon coating. This two-step method is facile to prepare nanosized LiFePO4 and easy to optimize the carbon content for surface coating. X-ray diffraction shows that the LiFePO4/ C composite possesses good crystallinity. Spherical morphology with a diameter of 30–150 nm is observed by scanning electron microscope and transmission electron microscope. Electrochemical measurements indicate that the LiFePO4/C composite exhibits discharge capacities of 162, 144, 126, and 106 mAh g at 0.1, 1, 2, and 5C, respectively. No capacity fading is observed in 50 cycles.
منابع مشابه
A high performance lithium-ion battery using LiNa0.02K0.01FePO4/C as cathode material and anatase TiO2 nanotube arrays as anode material
In this paper we report on a lithium ion battery (LIB) based on improved olivine lithium iron phosphate/carbon (LiFePO4/C) as cathode material and LiNa0.02K0.01FePO4/C synthesized by sol-gel method and TiO2 nanotube arrays (TNAs) with an anatase phasesynthesized through anodization of Ti foil as an anode electrode. Crystallographic structure and surface morphology of the cathode and anode mate...
متن کاملMicrometric Growth of V2O5Hexagonal Nano-plates as an Active Material for Lithium Ion Battery Cathode Electrode
This manuscript reports the synthesis of V2O5 nanostructures using reflux method, without using additives such as surface reactants. The influence of reaction parameters like temperature and concentration on the growth of nanostructures have been investigated. It has been observed that the nanostructures are formed with a hexagonal nano-plate morphology, grown from a common core. The diameter o...
متن کاملElectrochemical Characterization of Low-Cost Lithium-Iron Orthosilicate Samples as Cathode Materials of Lithium-Ion Battery
Lithium-iron-orthosilicate is one of the most promising cathode materials for Li-ion batteries due to its safety, environmental brightness and potentially low cost. In order to produce a low cost cathode material, Li2FeSiO4/C samples are synthesized via sol-gel (SG; one sample) and solid state (SS; two samples with different carbon content), starting from Fe (III) in the raw materials (lo...
متن کاملEnhancement In Electrochemical Performance Of Advanced Battery Electrodes Using Carbon- Nanomaterial Composites
ENHANCEMENT IN ELECTROCHEMICAL PERFORMANCE OF LiFePO4-CARBONNANO COMPOSITE MATERIALS FOR LITHIUM ION BATTERIESbyKULWINDER S. DHINDSAMay 2015Advisor:Dr. Zhixian ZhouCo Advisors: Dr. Ratna Naik and Dr. Gholam-Abbas NazriMajor:Physics (Condensed Matter)Degree:Doctor of PhilosophyLiFePO4 has attracted great interest as a cathode material for lithi...
متن کاملTheoretical Assessment of the First Cycle Transition, Structural Stability and Electrochemical Properties of Li2FeSiO4 as a Cathode Material for Li-ion Battery
Lithium iron orthosilicate (Li2FeSiO4) with Pmn21 space group is theoritically investigated as a chathode material of Li-ion batteries using density functional theory (DFT) calculations. PBE-GGA (+USIC), WC-GGA, L(S)DA (+USIC) and mBJ+LDA(GGA) methods under spin-polarization ferromagnetic (FM) and anti-ferromagnetic (AFM) procedure are used to investigate the material properties, includin...
متن کامل